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The Computation of a Certain Metric Invariant 
of an Algebraic Number Field 

By Horst Brunotte 

Abstract. Let F be an algebraic number field and denote by N(a) the absolute norm and byr' 
the maximum of the absolute values of the conjugates of the element a of F. Define CF to be 
the best possible constant with the property: For every a E F there exists a unit u of F such 
that ua S CFN(a) /1 Q]. An algorithm for the computation of CF is described and some 
examples are given. 

1. Introduction. Let F be an algebraic number field of degree d over the field of 
rational numbers Q, U the group of units of F, and a . . , Ur a full set of 
representatives of nonconjugate embeddings of F into the field of complex numbers 
C. We denote by CF the best possible constant with the property: For every a E F 
there exists a unit u E U such that 

max{ Iai(ua)I,..., Iar(ua) } sCFN(a),1d; 

here N(b) is the absolute value of the usual norm of the element b of F. 
The existence of and upper bounds for CF are well known (e.g., [6, p. 526]; [7, p. 

351]; [9, p. 22]; [10, p. 271]; [13, p. 260]), and it was shown in [3] that the constant CF 

can be computed effectively. Further some properties and an application of CF were 
investigated, and the value of CF was given for the case r < 2. 

In the present note an algorithm for the computation of CF for the case r > 2 is 
described. However, this algorithm works well only if the degree and the absolute 
value of the discriminant D of F are small; this is mainly due to the fact (see the first 
step of the algorithm in Section 3) that the computation of a full system of 
nonequivalent integers of F of absolute norm < (2/7r)tj Dj (t = number of com- 
plex primes of F) may require much computation time. Therefore the algorithm is 
used here to find the constant CF for some cyclotomic fields of small degree (see 
Table 2). 

As a by-product of these computations, it is shown that the algorithm proposed by 
W. E. H. Berwick [1] for the computation of fundamental units of F for the case 
r = 3 cannot be gencralized for r > 3 (see Section 5 for details). 

It should be noted that one can define a similar constant cF(UO) for any subgroup 
UO of finite index in U. It can be derived easily from [3] that the analogue of 
Algorithm C below will also give the constant CF(UO). 
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2. Auxiliary Results and an Upper Bound for CF. Let ei 1 if ai is real, ei = 2 if ai 
is complex, a(i) = ai(a) (i = l,...,r) andWd= max{l a(),.. .,a(r) } (a E F). For 
(bl,...,br) E Rr we denote by U(bl,...,br) the set of units u of F such that 
I u(') I< bi (i = 1,... ,r). We shall assume throughout that u . . Iur_1 is a funda- 
mental system of units of F, and for u E Uwe denote by vI(u),.. . ,vr(u) E Z the 
exponents in the representation u = wutI,(u).urrl(u) with w a root of unity in F. 

The results of the following lemmas are used for the computation of cF; their 
proofs are left to the reader. 

LEMMA 1. Let bl,...,br E R+, u E U(bl,...,br), and let (api)pi=I. r-I be the 
inverse of the (regular) (r - 1) X (r - 1)-matrix 

el log|ul' I el logIu r-l| 

er-I log|ur '| ... er I log uI r-'I 

Then the following inequalities hold: 

r-1 { r 1 
lvp(u)l|< l apilmax eilogbi, ejlogbji (P= l, ... ,r-1), 

i=l I j=I J 
i:#i 

r-1I 

2 p ( u) logI|Upr)l| < log br . 
p=I 

COROLLARY. Let F/Q be Galois, u E U, and assume that for every p, Tr E { 1,E... 
r - 1 there exists an automorphism a of F such that Iv,(au) I I vp(u) I. Then 
forp=l,...,r-1, 

|vp(u)| < el(r- 1)(logV)mint 2 lakil k = I1,. ,r-1} 

where (akl)k1 i=, is the matrix defined in Lemma 1. 

Remark. In special cases the bounds for the vp's may be sharpened as the 
following example shows. Let Q(n) be the nth cyclotomic field, Un the units and Wn 
the roots of unity of Q(n), m = p(n)/2 (Euler's (p-function) and b E R, b > 1. For 
n = 7, 11, 13 using the fundamental system of units of Q(n) as described in Table 2 
(see Section 4) and the Galois module structure of Un, one can find a full system of 
representatives of nonconjugate u E Un modulo Wn with 1 <v' b by checking all 
integral PI, , . I ., - I which satisfy conditions (i), (ii), (iii): 

(i) I vpI 2(m - 1)(logb)min{ I7=,' Il akII k = ,...,m -I (p = ,...,m -1), 
(ii) pm- vp log I u(m) I < log b, 
(iii) v> - 1. 

For let n = 7 (the other cases are dealt with similarly) and let u E U7 such that 
1 < ?u b. Using the fundamental system of units of Q(7)I as given in Table 2, the 
conjugates of u = u"Iu"2 are u' = u"2u'-1-"2 and u" ujPIP2uP1. It suffices to show 
that one of the pairs (v,(u), v2(u)), (v,(u'), v2(u')), (v,(u"), v2(u")) satisfies condi- 
tion (iii) above, because by Lemma 1 and its corollary each of these three pairs 



A METRIC INVARIANT OF AN ALGEBRAIC NUMBER FIELD 629 

satisfies (i) and (ii). If vP - 1, the first pair will do. If vP = 0, choose either the 
second or the third pair according as v2 > 0 or v2 < 0. In case PI < 0, take the 
second pair if v2 > 0 and the third pair otherwise. 

LEMMA 2. Let u E U, p {1,. . . r- 1), Vk = Upku fork E Z, and suppose<3 I v1. 
Then V7 - vfor all k E N. 

LEMMA 3 (B. L. VAN DER WAERDEN [13]). Let D be the discriminant of F, t the 
number of complex primes of F, gF (2f1T)tj D l, R the ring of integers of F, and 
al,... , as E R a full set of representatives of nonassociate a E R \ {0} such that 
N(a) ? gF. For eachj E {1,. . . ,r} there exists a unit u E U such that I u(i) I< 1 for 
i #7 j and 

lumjl (gmax I |a(k)| 1dl = I., ***s; k = 1,., r) I)e 

The proof of the following proposition, which gives an upper bound for CF, iS 

analogous to that of the first part of [10, Satz 8] and will be omitted. 

PROPOSITION 1. 

r r- I 
cF 4 ax { maix~ ' 

Examples. Using the units (or their inverses) of Q(P), as given in Table 2 below, 
the following upper bounds for cQ(p, for primes p with 7 < p < 19 can be obtained 
(see Table 1). 

TABLE 1 

p upper bound for cQ(P, 

7 2.246 980 
11 5.432 324 
13 7.345 947 
17 18.048 74 
19 30.037 10 

3. Outline of the Algorithm. The algorithm for the computation of CF will be given 
in the style of Knuth [8]. It was shown in [3] that this algorithm does in fact yield the 
constant cF. 

ALGORITHM C (Computation of CF). 

C 1. (Computation of units vl,... , vr E U with the property I v(j) I< 1 for p, 
j = 1,..., r; p #? j.) Compute a full system of representatives al,..., aS E R of the 
nonassociate a E R \ {0} such that N(a) < gF (see Lemma 3). Put 

b=gmax{la (k)|-d|ll= I,...,s;k= l,..,r) 
, 

(j = 1l,...,) 

Apply Lemmas 1 and 2 to find v,.. .,vr in the set U(b ,...,br). (Remark. As the 
bounds b1,... , br given in C 1 may be much too large, one should first compute the 
units u E U(bl,..., br) with small v,(u),...,v r_(u).) 
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TABLE 2 

n U,. . .,Um-I ulI,. U1,m-I CQ(n) 

7 u1 - sin(2 /7) 0.445... (u13u23)I/3 = 1.593 845... 
sin( r/7) 

U sin(3?T/7) 1.24... 
sin( r/7) 

1.80 ... 

9 u = -,W) 1.87 ... (Ulu3)I/3= 1.755 652... 

U2 = 1.) + 53) .... 
13 

0.347 ... 

u sin(( p ? 1) ?/111.68 ...2u-I-u-1 )/ 
sin( /1 1) (uI2uI3u 5 22 25 33U35U42 

(p 1. 4) 0.830 ... 1.901 021... 
1.30 ... 
0.284 ... 
1.91 ... 

13 u sin((p + 1) /13 1.77 ... (.u2. 2 -1 
u- )I/6 p sin( ?/1 3) IU3IU63U14 

(p 1, .5) 1.13 ... 2.137 071 ... 
0.709 ... 
1.49 ... 
0.241 .. 
1.94 ... 

15 Ul 1 - 0.415... (uj2 uj )'/4 1.632 900... 
3? 15 111 

U2 4 ? (o(2-_(7 ) 1.98... 

U3 = + ?(? 15)-w( 4) 1.48... 

0.813 ... 

16 ul 1 ?+ /2? + 4.26 ... (ullu112uuj2)1/4 2.232 495... 

U2 = I - /2- +X co I ~ 1.17... 

U3 = 1 + V/2- + 0.566... 

0.351 ... 

17 up sin((p + 1)/17) 
sin( ?/1 7) 

(p 1,...,7) 

19 u~ sin((p ? 1)?/1 

sin( 7T/ 19) 

(p1.8) 

20 0.312 ... (ulI1u12uu-2)'/4 1.787 799... 

U2 2 +2(w2U-w) 0.907 ... 
2 

U3 = + 2(@t- @(270) ) 1.97... 2 2 
1.78... 

C 2. (Computation of the set U' U(v,... .,vr)*) The set U' is computed by 
applying Lemmas 1 and 2. 

C 3. (Computation of the sequence of successive minima of the absolute values of 
the conjugates of u-, u E U'.) Do steps C 3.1, C 3.2, C 3.3 for i = 1,...,r, and then 
go to step C 4. 
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C 3.1 (Initialize). Put k = 1 and ail = min{I u(i) 1-'1 u E U'). 
C 3.2 (Finding candidates for the next successive minimum). Define Ai,k 

{ u(i) 1-1 u E U' and 1 <I ui) < a-'}. 
C 3.3 (Recurrence step). If Al,k = 0, put q, = k + 1, ai k+ = 1, and take the 

next i. If Ak # 0,putal k? = min A kset k k + 1, and go to C 3.2. 
C 4. (Definition of the set A.) Define 

A {(ai,...,a,) E fail,...,a1,} I max{al,...,ar, 1, 

max{lu(l)Ial,...,Iu(r)Iar} r 1 for all u E U'}. 

C 5. (Final step.) Put CF = (min{llr 
I 
a' I (al,... ,ar) E A})-/d. (Remark. In 

some special cases one need not test every (al,...,ar) E A in order to find CF; e.g., 
using the Galois group of Q(n) in the examples mentioned below, one may restrict 
oneself to the case a1 = 1.) 

4. Examples. In this section we give the results of the computation of the constant 
CQ(n) of some cyclotomic fields Q(n). For brevity we write up_ =I u(j) I, where 
U..... ,UM_ (m = 9p(n)/2) is the fundamental system of units of Q(n) which is 
described in the second column of Table 2 (here we write w(k) = Dk + gn k, and Dn 
denotes a primitive nth root of unity); for these systems of fundamental units the 
reader is referred to [2, Kap. V], [4, pp. 91, 94], and [5, Kap. III, Satz 27], 
respectively. In order to fix the different embeddings of Q(n) into C, the first three 
digits of the absolute values of the conjugates of ul are listed in the third column of 
Table 2. Finally the first seven digits of cQ(n) for 6 < zp(n) < 12 are given in the 
fourth column of Table 2. 

Remarks. (i) In computing CQ(n), real numbers a and b with a - b I< m * 10-15 

were regarded as being equal. 
(ii) The computations were carried out partly on the TR 445 of the Universitat 

Dusseldorf and partly on the CYBER 76 of the Universitat Koln. 

5. Remark on an Algorithm of W. E. H. Berwick. Let F be an algebraic number 
field, and let a ... , a, be a full set of representatives of nonconjugate embeddings of 
Finto C. Forp = 1,...,r, let 

Up = {u E U|jai(u)j < 1 for all i 7 p), 

and choose up E Up such that 

|a(up)|= min{ ap(u)| |u E Up). 

One may ask whether or not the set U .1., U,r) contains a fundamental system of 
units of F. 

This question was answered in the affirmative by W. E. H. Berwick [1] for the case 
r = 3; in fact he proved that any two elements of the set {ul, U2, U3} form a 
fundamental system of units of F (for an application of Berwick's algorithm see,e.g., 
[12]). However, it was conjectured (e.g., [11, p. 6.09]) that the answer to the above 
question should be no if r > 3. The following examples show the truth of this 
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conjecture: Let VJ" be the subgroup of Ub (see the remark following Lemma 1) 
generated by WJJ and the conjugates of a unit u E U(J with the properties 

(i)Iu(j)I< 1 forallj> 1, 
(ii) I u0) I minimal among all units in U4 which satisfy (i). 

In the examples mentioned below u is unique up to roots of unity, and it is plain that 
Algorithm C also gives the unit u. The index (U4: VJ') for some n is listed in Table 3. 

TABLE 3 

n 11 13 15 16 20 

(Un :Vn) 11 14 4 4 3 
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